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Outline of the presentation

• Brief introduction on canonical quantum gravity and
quantum cosmology.

• We shall pick up EH gravity theory along with a scalar
field and cosmic matter part present in it.

• We also consider an anisotropic cosmological model.

• We shall describe Schutz’s formalism for the matter sector.

• Wheeler-DeWitt quantization.

• Restoring the unitarity.



• Gravity is the geometry of curved space-time.

• Mass-energy curves the space-time.

• Free mass moves on straight paths on curved space-time.

Quantum theory of gravity essentially means quantum the-
ory of space-time geometry.

• Is this possible to test quantum gravity in laboratory?

Epl ≡
√
~C5/G ≈ 1019GeV

• Cosmological laboratory.

• Removing the Big-Bang singularity.

• Understanding the birth of the universe.



• The starting point of quantum gravity is the Hamiltonian
formalism of gravity.

• ADM formalism : Space and time separation (3 + 1 split).

• ADM decomposition of the metric gµν is

gµν =

(
−N2 +NaN

a N b

Nb hab

)
where N is lapse function, Na is shift
vector and hab is induced metric on the
3-d hypersurface foliated at fixed time.

• Superspace : The space of 3-geometries. (J. A. Wheeler &
B. S. DeWitt )

• Quantum cosmology is performed on finite dimensional
mini-superspace.



Let us start with the action

A =

∫
M
d4x
√
−g
[
R− F (φ)gµν∂µφ∂νφ

]
+ 2

∫
∂M

d3x
√
hhijK

ij

+

∫
M
d4x
√
−gP (1)

• R is the ricci scalar with the metric gµν .

• Second term is a non-linear self-coupling scalar field
minimally coupled to gravity.

• The second integration term is the GHY term where hij
and K are the induced metric and extrinsic curvature of
the fixed time sliced hypersurface respectively.

• P is the pressure of the cosmological fluid.

Reference - Babak Vakili, Phys. Lett. B 688 (2010) 129.
J. Socorro, M. Sabido, M.A. Sanchez, M.G. Frias Palos, Rev. Mex.
Fs. 56 (2) (2010) 166171.



• Here we shall consider the cosmic matter as a perfect fluid
obeying EoS

P = ωρ . (2)

ρ being the density of the fluid.

• In Schutz’s formalism one can cast fluid’s four velocity
vector in terms of four potentials h, ε, θ and S in the
following way

uν =
1

h
(∂νε+ θ∂νS) (3)

where h is the specific enthalpy and S is the specific
entropy. The other two potentials θ and ε are irrelevant
physically.

• Normalozation condition reads

uνu
ν = 1 . (4)

Reference - B. F. Schutz, Phys. Rev. D 2 (1970) 2767.



• Now the cosmic fluid pressure P in terms of the specific
enthalpy h and specific entropy S reads

P =
ω

(1 + ω)1+1/ω
h1+1/ωe−S/ω . (5)

• Cosmological model : Here we take up Bianchi I metric
which is given by

ds2 = N2(t)dt2 −A2(t)dx2 −B2(t)dy2 − C2(t)dz2 (6)

where N(t) is called the lapse function and A(t), B(t), C(t)
are three functions of the cosmic time t.

Reference - B. F. Schutz, Phys. Rev. D 4 (1971) 3559.



• The Ricci scalar for this metric is given by

R =
−2

N3ABC

[
NAḂĊ +B

(
NȦĊ +NAC̈ − ṄAĊ

)
+

C
{
N
(
BÄ+ ȦḂ +AB̈

)
− Ṅ

(
BȦ+AḂ

)}]
(7)

where the dots denote derivative with respect to time t.

• The gravity sector of the action along with the scalar field
can be written down upto a constant volume factor as

Sg =

∫
dt

[
− 2

N
(ȦḂC + ḂĊA+ ĊȦB)− F (φ)ABC

N
φ̇2

]
=

∫
dt Lg . (8)

• Once the Lagrangian for the gravity part is identified, we
can proceed to find out the Hamiltonian for the gravity
sector.



• We make the following transformations

A(t) = eZ0+Z++
√

3Z−

B(t) = eZ0+Z+−
√

3Z−

C(t) = eZ0−2Z+ (9)

where Z0(t), Z+(t), Z−(t) are the new variables that we
shall work with instead of A(t), B(t), C(t).

• The Hamiltonian for the gravity sector therefore reads

Hg = − 1

24
Ne−3Z0(p2

0 − p2
+ − p2

−)− 1

4F (φ)
Ne−3Z0p2

φ (10)

where p0, p+, p− and pφ are the canonical momenta
conjugate to Z0, Z+, Z− and φ respectively.

Reference - F. G. Alvarenga, J. C. Fabris, N. A. Lemos, G. A.
Monerat, Gen. Relativ. Gravit. 34 (2002) 651.



• With respect to a comoving observer, the fluid four velocity
vector takes the form uν = (N, 0, 0, 0). Using eq.(s)(3), (4),
we obtain

h =
ε̇+ θṠ

N
. (11)

• Substituting h in eq.(5) leads to the form of the matter
sector of the action (1) which upto a volume factor reads

Sm =

∫
dt

[
N(t)−1/ωe3Z0

ω

(1 + ω)1+1/ω
(ε̇+ θṠ)1+1/ωe−S/ω

]
=

∫
dt Lm . (12)

• The Hamiltonian for the matter sector can be obtained as

Hm = Ne−ωZ0pω+1
ε eS (13)



• One can recast the Hamiltonian for the matter sector in a
more tractable form. For that one needs the canonical
transformations

T = pSe
−Sp−(ω+1)

ε (14a)

pT = pω+1
ε eS (14b)

ε̄ = ε− (ω + 1)
pS
pε

(14c)

p̄ε = pε . (14d)

• The Hamiltonian for the matter sector now becomes

Hm = Ne−3Z0e3(1−ω)Z0pT (15)

where pT is the canonical momentum conjugate to the
variable T which can be considered as the new cosmic time.

Reference - V. G. Lapchinskii, V. A. Rubakov, Theor. Math.
Phys. 33 (1977) 1076.



• The Hamiltonian for the full theory takes the form

H ≡ Hg +Hm

= Ne−3Z0

[
− 1

24
(p2

0 − p2
+ − p2

−)− 1

4F (φ)
p2
φ + e3(1−ω)Z0pT

]
.

(16)

• The gauge choice N = e3ωZ0 makes the new canonical
variables (T, pT ) decouple from the gravity sector. So the
new set of spacetime coordinates are (Z0, Z+, Z−, T ).

• Quantization of the model : To get the WD equation,
we first replace the momenta appearing in the Hamiltonian
(16) by their quantum mechanical operator representations,
namely,
p0 = −i ∂

∂Z0
, p+ = −i ∂

∂Z+
, p− = −i ∂

∂Z−
, pφ = −i ∂∂φ and

pT = −i ∂∂T respectively (setting ~ = 1).



• The WD equation then reads

ĤΨ(Z0, Z+, Z−, T ) = 0 (17)

where

Ĥ =

[
∂2

∂Z2
0

− ∂2

∂Z2
+

− ∂2

∂Z2
−

+
1

4F (φ)

∂2

∂φ2
− 24ie3(1−ω)Z0

∂

∂T

]
.

(18)

• We shall now consider a stiff fluid for which ω = 1. The
WD equation then reduces to

∂2Ψ

∂Z2
0

− ∂2Ψ

∂Z2
+

− ∂2Ψ

∂Z2
−

+
1

4F (φ)

∂2Ψ

∂φ2
= 24i

∂Ψ

∂T
. (19)

• We now make the following ansatz to solve (19)

Ψ(Z, φ, T ) = e−iETΦ(Z, φ) , Z ≡ (Z0, Z+, Z−) . (20)



• This yields
ĤΦ = 24EΦ (21)

where

Ĥ =
∂2

∂Z2
0

− ∂2

∂Z2
+

− ∂2

∂Z2
−

+
1

4F (φ)

∂2

∂φ2
. (22)

• Hermiticity : To construct a well behaved wave function
the operator Ĥ has to be a self-adjoint operator. That is
we must have

(ĤΦ1,Φ2) = (Φ1, ĤΦ2) . (23)

• We define the inner product between any two wave
functions Φ1 and Φ2 in the following way

(Φ1,Φ2) =

∫
Φ∗1(Z, φ)F (φ)Φ2(Z, φ) dZdφ . (24)



• Boundary Conditions : Φ2 = 0, ∂Φ2
∂Z0

= 0 at Z0 = ±∞.
The conditions are same for Z+,Z− and φ except for φ the
end points are 0 and ∞.

• We apply the separation of variables and the partial
differential equation (21) decouples to the following second
order differential equations

d2η(φ)

dφ2
+ 4κ2F (φ)η(φ) = 0 (25a)

d2ξ+(Z+)

dZ2
+

+K2
+ξ+(Z+) = 0 (25b)

d2ξ−(Z−)

dZ2
−

+K2
−ξ−(Z−) = 0 (25c)

d2ξ0(Z0)

dZ2
0

+ (K2
+ +K2

− − κ2 − 24E)ξ0(Z0) = 0 . (25d)



• Assume F (φ) = λ
4φ

m, (m 6= −2, λ > 0) along with the
boundary conditions the solutions of (25) lead to the total
wave function of the form

Ψ(Z, φ, T ) = C0C+C−Cm,λκ
1

m+2φ
1
2 e−iK+Z+e−iK−Z−e−iK0Z0

× e−iETJ 1
m+2

(
2
√
λφ

m+2
2 κ

m+ 2

)
(26)

where

Cm,λ = c2(m+ 2)−
1

m+2λ
1

2(m+2) Γ

(
1 +

1

m+ 2

)
.

• We now proceed to construct a wave packet using the
superposition principle in the following way

Ψwp =

∫
κ

1
2
−γe−(K2

0+K2
++K2

−+κ2)Ψ(Z, φ, T ) dκdK0dK+dK− .

(27)



• Important note :

K2
0 = K2

+ +K2
− − κ2 − 24E (28)

• With this wave packet, we calculate its norm. This reads

||Ψwp|| =
1

8

(
C0C+C−Cm,λ

2γ

)2(√π

2

)4

. (29)

• So now the normalized wave packet becomes

Ψwp =
8
√

2γ

πC0C+C−Cm,λ

∫
κ

1
2
−γe−(K2

0+K2
++K2

−+κ2)Ψ(Z, φ, T )

dκdK0dK+dK− .(30)



• From this wave packet (30), one can as well proceed to
calculate the expectation value of the spatial volume of the
universe. This reads

〈ABC〉(T ) ≡ 〈e3Z0〉(T )

= e
9
2(T 2+1). (31)

• It clearly tells us that at the beginning of time, that is at
T = 0, the universe had a finite volume. The figure
displays the variation of the volume expectation of the
universe with the time parameter T .



• Here now let’s study the behavior of the probability density
function, that is

ρ = Ψ∗wpΨwp (32)

Behavior of the probability density function with respect to φ and Z0.

We plot for a particular value of the time parameter T = 0, with the

other constant values λ = 1 and m = 2.
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