UNITARITY IN Scalar-Metric Quantum Cosmology

 Saumya GhoshDepartment of Physical Sciences Indian Institute of Science Education and Research Kolkata

Outline of the presentation

- Brief introduction on canonical quantum gravity and quantum cosmology.
- We shall pick up EH gravity theory along with a scalar field and cosmic matter part present in it.
- We also consider an anisotropic cosmological model.
- We shall describe Schutz's formalism for the matter sector.
- Wheeler-DeWitt quantization.
- Restoring the unitarity.
- Gravity is the geometry of curved space-time.
- Mass-energy curves the space-time.
- Free mass moves on straight paths on curved space-time.

Quantum theory of gravity essentially means quantum theory of space-time geometry.

- Is this possible to test quantum gravity in laboratory?

$$
E_{p l} \equiv \sqrt{\hbar C^{5} / G} \approx 10^{19} G e V
$$

- Cosmological laboratory.
- Removing the Big-Bang singularity.
- Understanding the birth of the universe.

- The starting point of quantum gravity is the Hamiltonian formalism of gravity.
- ADM formalism : Space and time separation (3+1 split).
- ADM decomposition of the metric $g_{\mu \nu}$ is

$$
g_{\mu \nu}=\left(\begin{array}{cc}
-N^{2}+N_{a} N^{a} & N^{b} \\
N_{b} & h_{a b}
\end{array}\right)
$$

where N is lapse function, N_{a} is shift vector and $h_{a b}$ is induced metric on the 3-d hypersurface foliated at fixed time.

- Superspace : The space of 3 -geometries. (J. A. Wheeler \& B. S. DeWitt)
- Quantum cosmology is performed on finite dimensional mini-superspace.

Let us start with the action

$$
\begin{array}{r}
\mathcal{A}=\int_{M} d^{4} x \sqrt{-g}\left[R-F(\phi) g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi\right]+2 \int_{\partial M} d^{3} x \sqrt{h} h_{i j} K^{i j} \\
+\int_{M} d^{4} x \sqrt{-g} P \tag{1}
\end{array}
$$

- R is the ricci scalar with the metric $g_{\mu \nu}$.
- Second term is a non-linear self-coupling scalar field minimally coupled to gravity.
- The second integration term is the GHY term where $h_{i j}$ and K are the induced metric and extrinsic curvature of the fixed time sliced hypersurface respectively.
- P is the pressure of the cosmological fluid.

Reference - Babak Vakili, Phys. Lett. B 688 (2010) 129.
J. Socorro, M. Sabido, M.A. Sanchez, M.G. Frias Palos, Rev. Mex.

Fs. 56 (2) (2010) 166171.

- Here we shall consider the cosmic matter as a perfect fluid obeying EoS

$$
\begin{equation*}
P=\omega \rho \tag{2}
\end{equation*}
$$

ρ being the density of the fluid.

- In Schutz's formalism one can cast fluid's four velocity vector in terms of four potentials h, ϵ, θ and S in the following way

$$
\begin{equation*}
u_{\nu}=\frac{1}{h}\left(\partial_{\nu} \epsilon+\theta \partial_{\nu} S\right) \tag{3}
\end{equation*}
$$

where h is the specific enthalpy and S is the specific entropy. The other two potentials θ and ϵ are irrelevant physically.

- Normalozation condition reads

$$
\begin{equation*}
u_{\nu} u^{\nu}=1 \tag{4}
\end{equation*}
$$

Reference - B. F. Schutz, Phys. Rev. D 2 (1970) 2767.

- Now the cosmic fluid pressure P in terms of the specific enthalpy h and specific entropy S reads

$$
\begin{equation*}
P=\frac{\omega}{(1+\omega)^{1+1 / \omega}} h^{1+1 / \omega} e^{-S / \omega} \tag{5}
\end{equation*}
$$

- Cosmological model: Here we take up Bianchi I metric which is given by

$$
\begin{equation*}
d s^{2}=N^{2}(t) d t^{2}-A^{2}(t) d x^{2}-B^{2}(t) d y^{2}-C^{2}(t) d z^{2} \tag{6}
\end{equation*}
$$

where $N(t)$ is called the lapse function and $A(t), B(t), C(t)$ are three functions of the cosmic time t.

Reference - B. F. Schutz, Phys. Rev. D 4 (1971) 3559.

- The Ricci scalar for this metric is given by

$$
\begin{align*}
R= & \frac{-2}{N^{3} A B C}[N A \dot{B} \dot{C}+B(N \dot{A} \dot{C}+N A \ddot{C}-\dot{N} A \dot{C})+ \\
& C\{N(B \ddot{A}+\dot{A} \dot{B}+A \ddot{B})-\dot{N}(B \dot{A}+A \dot{B})\}] \tag{7}
\end{align*}
$$

where the dots denote derivative with respect to time t.

- The gravity sector of the action along with the scalar field can be written down upto a constant volume factor as

$$
\begin{align*}
S_{g} & =\int d t\left[-\frac{2}{N}(\dot{A} \dot{B} C+\dot{B} \dot{C} A+\dot{C} \dot{A} B)-\frac{F(\phi) A B C}{N} \dot{\phi}^{2}\right] \\
& =\int d t L_{g} \tag{8}
\end{align*}
$$

- Once the Lagrangian for the gravity part is identified, we can proceed to find out the Hamiltonian for the gravity sector.
- We make the following transformations

$$
\begin{array}{r}
A(t)=e^{Z_{0}+Z_{+}+\sqrt{3} Z_{-}} \\
B(t)=e^{Z_{0}+Z_{+}-\sqrt{3} Z_{-}} \\
\quad C(t)=e^{Z_{0}-2 Z_{+}} \tag{9}
\end{array}
$$

where $Z_{0}(t), Z_{+}(t), Z_{-}(t)$ are the new variables that we shall work with instead of $A(t), B(t), C(t)$.

- The Hamiltonian for the gravity sector therefore reads

$$
\begin{equation*}
H_{g}=-\frac{1}{24} N e^{-3 Z_{0}}\left(p_{0}^{2}-p_{+}^{2}-p_{-}^{2}\right)-\frac{1}{4 F(\phi)} N e^{-3 Z_{0}} p_{\phi}^{2} \tag{10}
\end{equation*}
$$

where p_{0}, p_{+}, p_{-}and p_{ϕ} are the canonical momenta conjugate to Z_{0}, Z_{+}, Z_{-}and ϕ respectively.

Reference - F. G. Alvarenga, J. C. Fabris, N. A. Lemos, G. A. Monerat, Gen. Relativ. Gravit. 34 (2002) 651.

- With respect to a comoving observer, the fluid four velocity vector takes the form $u_{\nu}=(N, 0,0,0)$. Using eq.(s)(3), (4), we obtain

$$
\begin{equation*}
h=\frac{\dot{\epsilon}+\theta \dot{S}}{N} \tag{11}
\end{equation*}
$$

- Substituting h in eq.(5) leads to the form of the matter sector of the action (1) which upto a volume factor reads

$$
\begin{align*}
S_{m} & =\int d t\left[N(t)^{-1 / \omega} e^{3 Z_{0}} \frac{\omega}{(1+\omega)^{1+1 / \omega}}(\dot{\epsilon}+\theta \dot{S})^{1+1 / \omega} e^{-S / \omega}\right] \\
& =\int d t L_{m} . \tag{12}
\end{align*}
$$

- The Hamiltonian for the matter sector can be obtained as

$$
\begin{equation*}
H_{m}=N e^{-\omega Z_{0}} p_{\epsilon}^{\omega+1} e^{S} \tag{13}
\end{equation*}
$$

- One can recast the Hamiltonian for the matter sector in a more tractable form. For that one needs the canonical transformations

$$
\begin{align*}
T & =p_{S} e^{-S} p_{\epsilon}^{-(\omega+1)} \tag{14a}\\
p_{T} & =p_{\epsilon}^{\omega+1} e^{S} \tag{14b}\\
\bar{\epsilon} & =\epsilon-(\omega+1) \frac{p_{S}}{p_{\epsilon}} \tag{14c}\\
\bar{p}_{\epsilon} & =p_{\epsilon} . \tag{14d}
\end{align*}
$$

- The Hamiltonian for the matter sector now becomes

$$
\begin{equation*}
H_{m}=N e^{-3 Z_{0}} e^{3(1-\omega) Z_{0}} p_{T} \tag{15}
\end{equation*}
$$

where p_{T} is the canonical momentum conjugate to the variable T which can be considered as the new cosmic time.

Reference - V. G. Lapchinskii, V. A. Rubakov, Theor. Math. Phys. 33 (1977) 1076.

- The Hamiltonian for the full theory takes the form

$$
\begin{align*}
& H \equiv H_{g}+H_{m} \\
&=N e^{-3 Z_{0}}\left[-\frac{1}{24}\left(p_{0}^{2}-p_{+}^{2}-p_{-}^{2}\right)-\frac{1}{4 F(\phi)} p_{\phi}^{2}+e^{3(1-\omega) Z_{0}} p_{T}\right] \tag{16}
\end{align*}
$$

- The gauge choice $N=e^{3 \omega Z_{0}}$ makes the new canonical variables $\left(T, p_{T}\right)$ decouple from the gravity sector. So the new set of spacetime coordinates are $\left(Z_{0}, Z_{+}, Z_{-}, T\right)$.
- Quantization of the model : To get the WD equation, we first replace the momenta appearing in the Hamiltonian (16) by their quantum mechanical operator representations, namely,
$p_{0}=-i \frac{\partial}{\partial Z_{0}}, p_{+}=-i \frac{\partial}{\partial Z_{+}}, p_{-}=-i \frac{\partial}{\partial Z_{-}}, p_{\phi}=-i \frac{\partial}{\partial \phi}$ and $p_{T}=-i \frac{\partial}{\partial T}$ respectively (setting $\hbar=1$).
- The WD equation then reads

$$
\begin{equation*}
\hat{H} \Psi\left(Z_{0}, Z_{+}, Z_{-}, T\right)=0 \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{H}=\left[\frac{\partial^{2}}{\partial Z_{0}^{2}}-\frac{\partial^{2}}{\partial Z_{+}^{2}}-\frac{\partial^{2}}{\partial Z_{-}^{2}}+\frac{1}{4 F(\phi)} \frac{\partial^{2}}{\partial \phi^{2}}-24 i e^{3(1-\omega) Z_{0}} \frac{\partial}{\partial T}\right] \tag{18}
\end{equation*}
$$

- We shall now consider a stiff fluid for which $\omega=1$. The WD equation then reduces to

$$
\begin{equation*}
\frac{\partial^{2} \Psi}{\partial Z_{0}^{2}}-\frac{\partial^{2} \Psi}{\partial Z_{+}^{2}}-\frac{\partial^{2} \Psi}{\partial Z_{-}^{2}}+\frac{1}{4 F(\phi)} \frac{\partial^{2} \Psi}{\partial \phi^{2}}=24 i \frac{\partial \Psi}{\partial T} \tag{19}
\end{equation*}
$$

- We now make the following ansatz to solve (19)

$$
\begin{equation*}
\Psi(Z, \phi, T)=e^{-i E T} \Phi(Z, \phi), Z \equiv\left(Z_{0}, Z_{+}, Z_{-}\right) \tag{20}
\end{equation*}
$$

- This yields

$$
\begin{equation*}
\hat{\mathcal{H}} \Phi=24 E \Phi \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\mathcal{H}}=\frac{\partial^{2}}{\partial Z_{0}^{2}}-\frac{\partial^{2}}{\partial Z_{+}^{2}}-\frac{\partial^{2}}{\partial Z_{-}^{2}}+\frac{1}{4 F(\phi)} \frac{\partial^{2}}{\partial \phi^{2}} . \tag{22}
\end{equation*}
$$

- Hermiticity : To construct a well behaved wave function the operator $\hat{\mathcal{H}}$ has to be a self-adjoint operator. That is we must have

$$
\begin{equation*}
\left(\hat{\mathcal{H}} \Phi_{1}, \Phi_{2}\right)=\left(\Phi_{1}, \hat{\mathcal{H}} \Phi_{2}\right) . \tag{23}
\end{equation*}
$$

- We define the inner product between any two wave functions Φ_{1} and Φ_{2} in the following way

$$
\begin{equation*}
\left(\Phi_{1}, \Phi_{2}\right)=\int \Phi_{1}^{*}(Z, \phi) F(\phi) \Phi_{2}(Z, \phi) d Z d \phi \tag{24}
\end{equation*}
$$

- Boundary Conditions : $\Phi_{2}=0, \frac{\partial \Phi_{2}}{\partial Z_{0}}=0$ at $Z_{0}= \pm \infty$. The conditions are same for Z_{+}, Z_{-}and ϕ except for ϕ the end points are 0 and ∞.
- We apply the separation of variables and the partial differential equation (21) decouples to the following second order differential equations

$$
\begin{gather*}
\frac{d^{2} \eta(\phi)}{d \phi^{2}}+4 \kappa^{2} F(\phi) \eta(\phi)=0 \tag{25a}\\
\frac{d^{2} \xi_{+}\left(Z_{+}\right)}{d Z_{+}^{2}}+K_{+}^{2} \xi_{+}\left(Z_{+}\right)=0 \tag{25b}\\
\frac{d^{2} \xi_{-}\left(Z_{-}\right)}{d Z_{-}^{2}}+K_{-}^{2} \xi_{-}\left(Z_{-}\right)=0 \tag{25c}\\
\frac{d^{2} \xi_{0}\left(Z_{0}\right)}{d Z_{0}^{2}}+\left(K_{+}^{2}+K_{-}^{2}-\kappa^{2}-24 E\right) \xi_{0}\left(Z_{0}\right)=0 \tag{25d}
\end{gather*}
$$

- Assume $F(\phi)=\frac{\lambda}{4} \phi^{m},(m \neq-2, \lambda>0)$ along with the boundary conditions the solutions of (25) lead to the total wave function of the form

$$
\begin{align*}
\Psi(Z, \phi, T)= & C_{0} C_{+} C_{-} C_{m, \lambda} \kappa^{\frac{1}{m+2}} \phi^{\frac{1}{2}} e^{-i K_{+} Z_{+}} e^{-i K_{-} Z_{-}} e^{-i K_{0} Z_{0}} \\
& \times e^{-i E T} J_{\frac{1}{m+2}}\left(\frac{2 \sqrt{\lambda} \phi^{\frac{m+2}{2}} \kappa}{m+2}\right) \tag{26}
\end{align*}
$$

where

$$
C_{m, \lambda}=c_{2}(m+2)^{-\frac{1}{m+2}} \lambda^{\frac{1}{2(m+2)}} \Gamma\left(1+\frac{1}{m+2}\right) .
$$

- We now proceed to construct a wave packet using the superposition principle in the following way

$$
\begin{equation*}
\Psi_{w p}=\int \kappa^{\frac{1}{2}-\gamma} e^{-\left(K_{0}^{2}+K_{+}^{2}+K_{-}^{2}+\kappa^{2}\right)} \Psi(Z, \phi, T) d \kappa d K_{0} d K_{+} d K_{-} \tag{27}
\end{equation*}
$$

- Important note :

$$
\begin{equation*}
K_{0}^{2}=K_{+}^{2}+K_{-}^{2}-\kappa^{2}-24 E \tag{28}
\end{equation*}
$$

- With this wave packet, we calculate its norm. This reads

$$
\begin{equation*}
\left\|\Psi_{w p}\right\|=\frac{1}{8}\left(\frac{C_{0} C_{+} C_{-} C_{m, \lambda}}{2 \gamma}\right)^{2}\left(\sqrt{\frac{\pi}{2}}\right)^{4} \tag{29}
\end{equation*}
$$

- So now the normalized wave packet becomes

$$
\begin{array}{r}
\Psi_{w p}=\frac{8 \sqrt{2} \gamma}{\pi C_{0} C_{+} C_{-} C_{m, \lambda}} \int \kappa^{\frac{1}{2}-\gamma} e^{-\left(K_{0}^{2}+K_{+}^{2}+K_{-}^{2}+\kappa^{2}\right)} \Psi(Z, \phi, T) \\
d \kappa d K_{0} d K_{+} d K_{-} .(30)
\end{array}
$$

- From this wave packet (30), one can as well proceed to calculate the expectation value of the spatial volume of the universe. This reads

$$
\begin{gather*}
\langle A B C\rangle(T) \equiv\left\langle e^{3 Z_{0}}\right\rangle(T) \\
=e^{\frac{9}{2}\left(T^{2}+1\right)} . \tag{31}
\end{gather*}
$$

- It clearly tells us that at the beginning of time, that is at $T=0$, the universe had a finite volume. The figure displays the variation of the volume expectation of the universe with the time parameter T.
- Here now let's study the behavior of the probability density function, that is

$$
\begin{equation*}
\rho=\Psi_{w p}^{*} \Psi_{w p} \tag{32}
\end{equation*}
$$

Behavior of the probability density function with respect to ϕ and Z_{0}. We plot for a particular value of the time parameter $T=0$, with the other constant values $\lambda=1$ and $m=2$.

References:

- B. S. DeWitt, Phys. Rev. 160 (1967).
- P. Pedram, S. Jalalzadeh, S.S. Gousheh, arXiv: 0705.3587.
- B. Vakili, Class. Quant. Grav. 27 (2010) 025008.
- S. Pal, N. Banerjee, Phys. Rev. D, 90 (2014) 104001.
- S. Pal, N. Banerjee, Phys. Rev. D, 91 (2015) 044042.
- B. Majumder, N. Banerjee, Gen. Relativ. Gravit. 45 (2013) 1.
- P. Pedram, S. Jalalzadeh, Phys. Lett. B 659 (2008) 6.
- S. Ghosh, S. Gangopadhyay, P. K. Panigrahi, Eur. Phys. J. C 78 (2018) 41.
- S. Ghosh, S. Gangopadhyay, P. K. Panigrahi, arXiv 1809.03312 [gr-qc].

ThankYou

$$
\text { 4ロ } \downarrow 4 \text { 可 } \downarrow \text { 引 }
$$

